DFL-815 配网自动化远方终端

技术使用说明书

江苏德菲勒智能科技有限公司

目录

第一章	:概 述	.1
1.	应用范围	.1
2.	主要功能	
3.	硬件结构	
4.	主要特点	.2
5.	设计规范	
第二章	技术参数	
1.	机械及环境参数	5
2.	电气参数	
3.	主要技术指标	
4.	电磁兼容	. 7
5.	绝缘试验	7
第三章	功能介绍	9
1.	遥信、遥测、遥控功能	9
2.	参数设置	
3.	装置自检	9
4.	电源失电保护	9
5.	对时功能	9
6.	SOE 记录存储及上送功能	9
7.	遥测越限检测及判别功能1	(
8.	馈线停电自动上传数据功能1	(
9.	通信功能1	(
10.	当地调试功能1	(
11.	输入输出回路安全防护功能1	1
笙川音	· 参数完值 1	7

DFL-815 配网自动化终端

	1.	装置参数	.12
		交流精度调整	
第	五章	装置使用说明	.14
	1.	装置面板显示说明	.14
	2.	装置液晶按键操作	.14
	3.	装置配置说明	.14
	4.	用户调试大纲	.19
	附图		.23

第一章 概 述

1. 应用范围

DFL-815为用于10kV及以下开闭所、配电房内馈线自动化远方终端,可在开闭所或配电房内集中组屏安装,也可在户外安装。

2. 主要功能

- ◆ 通过配置最多可配置96路开关量变位遥信,开关量输入为24V(可选48V、110V、220V等)光电隔离输入;
- ◆ 每个插件可选择1组三相交流电压和2组三相交流电流模拟量(或其他)输入,其基本内容有电压、电流、频率、功率及功率因数,最多可配置6组模块:
- ◆ 可以配置2路直流量变送器输入,此时需相应减少交 流模拟量输入个数;
- ◆ 通过配置最多可配置24路无源空节点遥控输出:
- ◆ 遥测越限告警及上传:
- ◆ 馈线停电自动识别并上传停电时刻负荷数据;
- ◆ 遥测定时保存功能,保存周期可设置;
- ◆ 装置告警、遥控操作、参数修改事件记录及事件SOE:
- ◆ 多种通讯规约可供选择:如101、104和DNP等。
- ◆ 配置多种接口,如:串口RS232、RS485及10/100M以 太网通讯口,可与外部多种智能设备通讯。

3. 硬件结构

本装置主要包括:

- ◆ 电源板:装置电源输入、2路直流量输入:
- ◆ 通讯管理板: RS232、RS485及10/100M以太网通讯口;
- ◆ 交流采样板: 4/8路交流电压、8/16路交流电流输入;
- ◆ 开入开出板:16路遥信输入、4路遥控输出(或其他); 配置原则:电源板、管理板和通讯板必配,交流采集板 以及开入开出板按需配置,各类型插件总数必须小于等 于8,最多可以配置组成12路。

4. 主要特点

DFL-815配网自动化远方终端采用高性能嵌入式芯片做为通信主CPU软件实现模块化、平台化,运行速度快,处理能力强,存储容量大,可扩展性好。

- ◆ 装置采用表面贴装技术,选用高性能、高可靠性工业级芯片,外围电路严格匹配,从而保证装置运行的可靠性:
- ◆ 使用先进的嵌入式操作系统,极大地满足了系统和数据处理的实时性:
- ◆ 具备多级看门狗,保证了装置的可靠运行;
- ◆ 大容量的存储空间,可以保存各种数据便于日后分析,如操作记录、遥测定时数据、遥测极值数据、遥测越限记录、SOE 事件记录等,并能生成历史曲线查看:
- ◆ 采用标准数据存储结构及标准通讯规约,便于和子站 连接:
- ◆ 装置各种采集量可以按需配置,通过配置软件设置, 使用灵活方便:
- ◆ 内部集成多种通讯规约与子站通讯,具有信息传送可 靠性高、速度快等优点:

- ◆ 装置通讯资源丰富,通过配置软件可以自由配置各种 任务(包括调试任务);
- ◆ 装置无需任何规约转换设备,可直接接入各种外部智 能设备,减少总的设备数量,节约投资;
- ◆ 采用高可靠性元器件,如继电器、连接器等,保证动作的正确性;
- ◆ 装置可接入B码对时,也可通过软件对时:
- ◆ 装置采用整屏标准 4U 机箱,插件前插式结构,结构 紧凑,安装使用方便,可当地及远方维护;
- ◆ 附带功能强大的调试维护软件,实现丰富的测量、记录、监视、控制等功能,支持各种历史数据的查询和导出功能。

5. 设计规范

- ◆ DL/T814-2002 配电自动化系统功能规范
- ◆ DL/T721-2000 配电网自动化系统远方终端
- ◆ 《配电系统自动化规划设计导则》
- ◆ GB/T14285继电保护和安全自动装置技术规程
- ◆ GB/T15153.1远动设备及系统电源及电磁兼容性标准
- ◆ DL/T634.5-101远动设备及系统标准传输协议子集 第101部分
- ◆ DL/T634.5-104远动设备及系统标准传输协议子集 第104部分
- ◆ GB 4208-93 外壳防护等级

- ◆ GB/T 17626.4—1998 电磁兼容 试验和测量技术 电快速瞬变脉冲群抗扰度试验
- ◆ GB/T 17626.5—1999 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验
- ◆ GB/T 17626.11-1999 电磁兼容 试验和测量技术 电压暂降、短时中断和电压变化的抗扰度试验
- ◆ GB/T 17626.2-2006 电磁兼容 试验和测量技术 静 电放电抗扰度试验

第二章 技术参数

1. 机械及环境参数

1.1 工作环境

- ◆ 温度: -40℃ +70℃ 保证正常工作
- ◆ 环境温度最大变化率: 1°C/min
- ◆ 湿度: 5% 100%
- ◆ 最大绝对湿度: 35g/m3
- ◆ 大气压力: 70 106Kpa

1.2 机械性能

- ◆ 机箱防护性能: 防护等级不低于 GB/T4208 规定的 IP54(室内)及 IP65(室外)要求:
- ◆ 工业级产品: 宽温度范围 (-40-+70), 防磁、反震、 防潮、防雷、防尘、防腐蚀;
- ◆ 壁挂式或柜式安装,扩展方便。

2. 电气参数

2.1 额定数据

- ◆ 直流电压: DC24/48V、DC110/220V等
- ◆ 交流电压: 57.7V(相电压)、100V(线电压)、220V(线

电压)

◆ 交流电流: 1A、5A ◆ 频 率: 50Hz

2.2 功率消耗

◆ 直流回路: < 20 W

◆ 交流电压: < 0.5VA/相

◆ 交流电流: < 0.5VA/相

2.3 测量范围及过载能力

◆ 交流电压: 1.2倍额定电压: 连续工作

◆ 交流电流: 2倍额定电流:连续工作

20 倍额定电流 1s

3. 主要技术指标

3.1 遥测量精度

lacktriangle U I : $\leq \pm 0.5\%$

lacktriangle P. Q. COS: $\leq \pm 1\%$

◆ 频 率: ≤ ±0.2%

3.2 遥信开入

◆ 分辨率: < 2ms

◆ 输入方式: 无源接点

3.3 遥控输出

◆ 输出方式: 继电器常开接点

◆ 接点容量: AC250V 8A/16A、/DC30V 8A/16A。

4. 电磁兼容

◆ 静电放电 符合 IEC1000-4-2 的规定, 严酷等级 4 级。

◆ 高频电磁场 符合 IEC1000-4-3 的规定, 严酷等级 4 级。

◆ 快速瞬变 符合 IEC1000-4-4 的规定, 严酷等级 4 级。

- ◆ 浪涌冲击 符合 IEC1000-4-5 的规定, 严酷等级 4 级。
- ◆ 震荡波 频率为 1MHz 及 100KHz 振荡波(差模,共模)脉 冲干扰。

5. 绝缘试验

◆ 绝缘电阻

终端单元输入、输出回路对地对各回路间绝缘 电阳不低于 $10M\Omega$ 。

◆ 耐电强度

输入、输出回路承受额定 50Hz、有效值为 2.0kV、时间为 1分钟交流耐压试验。

◆ 冲击电压

各输入输出端子对地,交流回路与直流回路间, 交流电流与交流电压间能承受 5KV(峰值)标准雷电 冲击波。

第三章 功能介绍

1. 遥信、遥测、遥控功能

遥信功能:最大配置 96 路自定义遥信开入,并有事件顺序记录(SOE),分辨率小于 2ms。

遥测功能:根据选择测量模块类型不同有所区别,主要 采集每一组交流测量的线相电压、电流、有功、无功及功率 因数,或者6路直流量。

遥控功能:正常遥控分闸、合闸。

2. 参数设置

装置参数可以通过液晶面板或者调试维护软件设置。

3. 装置自检

装置检测到本身故障,发出故障信号,闭锁装置(BSJ继电器返回),硬件故障包括:参数出错、出口故障、AD异常。

4. 电源失电保护

装置电源消失时,装置的实时信息在内部掉电保护的存储器(SRAM)中保存。

5. 对时功能

装置具备 B 码和软件对时对时功能,使用软件对时为通讯报文对时。

6. **SOE** 记录存储及上送功能

装置可存储最近的两个月的历史记录,记录条数无严格 限制。 装置记录运行时的遥信信息、运行状态和装置故障时的 告警信息:

- ◆ 告警/自检记录:记录装置异常状态,各测量量越限, 并上报;
- ◆ 遥信变位信息:记录遥信变位的时间及状态,并上报。

7. 遥测越限检测及判别功能

- ◆ 遥测越限检测电流越限检测、电压越限检测,也可设定功率和频率。
- ◆ 遥测越限判别 装置通过对比各种采集量或计算量的采样值和设定 的值,来判别是否越限,越限信息将以遥信形式产生 SOE 记录,主动上报主站或子站。

8. 馈线停电自动上传数据功能

装置能够自动识别馈线停电,并可记录存储及上送馈线 停电时刻的各种测量值。

9. 通信功能

装置具备 2 个光电隔离的 RS232 通讯口、2 个光电隔离的 RS485 通讯口(可选)以及 2 个 10/100M 以太网口。所有通讯口都能通过配置软件来配置相应的功能。实现与子站的数据转发、信息上送,接收并执行配网主站或子站下发的召唤、遥控等下行命令,进行故障处理。

10.当地调试功能

使用组态工具灵活配置装置的硬件接口(串口或网络) 与内部板卡或外围智能设备连接,通过维护调试软件可以方 便地实现各种测量值的查看、各种参数的召唤和修改、遥控 命令选择执行。也可以召唤装置记录的各种历史数据,如:测量值、SOE 历史记录、各种操作历史记录、越限记录、极值记录等,保存在本地供查看分析。

装置面板上配有各种运行指示灯,如运行灯、告警灯、 通讯灯、电源灯等。

11.输入输出回路安全防护功能

- ◆ 输入、输出均采用高可靠性的凤凰端子
- ◆ 信号输入、输出均采用光耦隔离
- ◆ 电流、电压回路均经 CT、PT 隔离变换后进入装置内部
- ◆ 控制输出使用空节点方式
- ◆ 装置有良好的接地

第四章 参数定值

1. 装置参数

需根据具体工程配置的模块来配置参数,各种模块的参 数稍有不同。整定说明

- a. 二段式过流保护:可按需要整定动作值、时间和选择投退。
- b. 一段后加速保护:加速保护在重合后开放 1.5S。可按需要整定动作值、时间和选择投退。
- c. 一段零序过流保护: 可按需要整定动作值、时间和选择跳闸或报警。
- d. 二次重合闸:每次都可独立设置动作时间和选择是否投退。如需在一次重合成功后再遇故障时闭锁二次重合,需设定二次重合闭锁时间。投入重合闸时,必须设置重合闸充电时间,且时间需大于一次二次重合闸动作时间(以大的为准)。二次重合闭锁时间需小于二次重合时间。
- e. 遮断电流闭锁: 当电流值大于整定值,闭锁跳闸,可按需要整定值大小和投退。不需要时整最大值且把控制字退出。
- f. 故障电流检测:用于合闸后在合闸闭锁判别时间内判断 是否有故障,按需整定。不需要时整最大值且把控制字退出。
- g. 有压合闸: 开关在分位, 电压大于整定值, 达到延时后合闸。有压定值大小、延时动作时间、是否投入均可设置。
- h. 失压跳闸: 开关在合位,且开关两侧电压都低于整定值, 达到延时后分闸。无压定值大小、延时动作时间、是否投入 均可设置。
- i. 零压跳闸: 合闸后在零压判别整定时间内检测到零序电压立刻分闸并闭锁合闸,在整定时间外检测到零压不跳闸,不需要时整最大值且把控制字退出。

零压判别时间一般小于分闸闭锁判别时间。

- j. 合闸闭锁:合闸后在合闸闭锁判别时间内检测是否有故障电流。合闸闭锁判别时间可单独整定。可通过控制字来投退是否判故障电流。(控制字投入)有故障电流:并且两侧都失压,闭锁合闸。无故障电流:则不闭锁合闸。(控制字不投)在判别时间内无压闭锁合闸。合闸闭锁判别时间一般小于无压分闸时间。
- k. 合闸闭锁不自动复归,需合上开关 20s、两侧有压 20s、闭锁侧有压合闸或通过遥控、按键 操作复归。
- 1. 分闸闭锁:合闸后在分闸闭锁判别时间内未失压则分闸闭锁。分闸闭锁判别时间可单独整定。分闸闭锁 300s 自动复归。m. 残压闭锁:在跳位时,任一侧电压达到残压整定值,并且在残压判别时间内消失。装置在有压时不再合闸。

残压闭锁不自动复归,需合上开关 20s、两侧有压 20s、闭锁侧有压合闸或通过遥控、或通过遥控、按键操作复归。

残压判别时间一般小于有压合闸时间和单侧有压合闸时间。

2. 交流精度调整

交流或直流调整功能,一般是装置维护或更换采样模块时使用。主要包括电压、电流幅值以及功率的调整,这是每一台装置调试的第一步(装置出厂时已经调试完毕,建议用户不要调整)。出厂装置都配有调试精度系数表和调试记录表。

第五章 装置使用说明

1. 装置面板显示说明

装置正常时管理板运行闪烁和电源灯亮,各模块的运行 灯也亮。

模块不正常工作时的状态在液晶屏幕上有显示,同时对应模块的告警灯也会亮。

2. 装置液晶按键操作

通过装置按键可以对 DFL-815 的主机箱内的模块和各个扩展机箱中的模块,进行参数设置、各种显示量(如遥信遥测) 查看。

按确认键可进入装置菜单,装置菜单结构,如图:

3. 装置配置说明

装置正视图,可见的插件布置如下:

电	Ι	Ι	Ι	Ι	10	管	AC	AC	AC	AC
源	0	0	0	0	板	理	板	板	板	板
板	板	板	板	板	2	板	1	2	2	2
	1	1	1	1						

其中 I0 板和 AC 板可以根据实际情况进行增减。电源板、第一块 I01 板、管理板、AC1 板是必配板。

◆ 管理板

一共有 4 个串口 COM1-COM4。每个串口同时支持 RS232 和 RS485 两种模式,但只能接一种,不可同时使用。两个以太网口,一个调试接口。

01	RXD1 (101)	串口1	RXD3	串口3	02
03	TXD1 (101)	232	TXD3	232	04
05	GND		GND		06
07	A1	串口1	A3	串口3	08
09	B1	485	В3	485	10
11	RXD2(液晶)	串口2	RXD4	串口4	12
13	TXD2(液晶)	232	TXD4	232	14
15	GND		GND		16
17	A2	串口2	A4	串口4	18
19	B2	485	B4	485	20
21	空		空		22
23	GPSA		GPSB		24

◆ 电源板

电源输入、开入电源输出、直流采样输入以及装置信号输出等。

	电源/直流/信号								
01	电源地								
02	电源+	电源开关							
03	电源-								
04	信号公共	失电信号							
05	装置失电(常开)								
06	装置失电(常闭)								
07	遥信电源+(输出)								
08	遥信电源-(输出)								
09	空								
10	屏蔽地								
11	直流采样 1 输入+								
12	直流采样 1 输入-	0~60V							
13	直流采样 2 输入+								
14	直流采样 2 输入-								
15	空								
16	装置故障(常开)	装置信号							
17	装置故障(常闭)								
18	装置告警								
19	装置信号公共								
20	电池活化公共	遥控输出							
21	活化启动								
22	活化退出								

◆ 交流采样板分为两种

AC 板 1: 4 路电压、8 路电流 (采集两组 A/B/C/零 电流) 输入。

AC 板 2: 16 路电流输入。

	AC	版 1			AC ħ	反 2	
01	Ia1	Ia1'	02	01	Ia1	Ia1'	02
03	Ib1	Ib1'	04	03	Ib1	Ib1'	04
05	Ic1	Ic1'	06	05	Ic1	Ic1'	06
07	Io1	Io1'	08	07	Io1	Io1'	08
09	Ia2	Ia2'	10	09	Ia2	Ia2'	10
11	Ib2	Ib2'	12	11	Ib2	Ib2'	12
13	Ic2	Ic2'	14	13	Ic2	Ic2'	14
15	Io2	Io2'	16	15	Io2	Io2'	16
17	Ua1	Ua1'	18	17	Ia3	Ia3'	18
19	Ub1	Ub1'	20	19	Ib3	Ib3'	20
21	Uc1	Uc1'	22	21	Ic3	Ic3'	22
23	Uo1	Uo1'	24	23	Io3	Io3'	24
25	Ua2	Ua2'	26	25	Ia4	Ia4'	26
27	Ub2	Ub2'	28	27	Ib4	Ib4'	28
29	Uc2	Uc2'	30	29	Ic4	Ic4'	30
31	Uo2	Uo2'	32	31	Io4	Io4'	32

◆ I0 板:可分为以下两种

IO 板 1:16 路开入, 3 路遥控开出。

I0 板 2:32 路开入。

开入电源统一使用装置电源板输出的开入电源。

	IO 板 1			IO 板 2
01	开入 01		01	开入 01
02	开入 02		02	开入 02
03	开入 03		03	开入 03
04	开入 04		04	开入 04
05	开入 05		05	开入 05
06	开入 06		06	开入 06
07	开入 07		07	开入 07
08	开入 08		08	开入 08
09	开入 09		09	开入 09
10	开入 10		10	开入 10
11	开入 11		11	开入 11
12	开入 12		12	开入 12
13	开入 13		13	开入 13
14	开入 14		14	开入 14
15	开入 15		15	开入 15
16	开入 16		16	开入 16
17	开入公共+		17	空
18	遥控公共1	遥控1	18	开入 17
19	遥分1		19	开入 18
20	遥合1		20	开入 19
21	遥控公共2	遥控2	21	开入 20
22	遥分 2		22	开入 21
23	遥合2		23	开入 22
24	遥控公共3	遥控3	24	开入 23
25	遥分3		25	开入 24
26	遥合3		26	开入 25
			27	开入 26

28	开入 27
29	开入 28
30	开入 29
31	开入 30
32	开入 31
33	开入 32
34	开入公共+

4. 用户调试大纲

4.1 操作流程

4.1.1 运行前检查

- ◆ 检查装置的型号及扩充组件是否与订货清单一致。
- ◆ 逐个检查装置各组成插件是否松动、脱落,有无机械 损伤及连接线断开等现象。
- ◆ 检查交流电源输入端有无短路现象;将电源开关闭 合,检查电源模块输出有无短路现象。
- ◆ 检查信号输入端接线是否正确。
- ◆ 检查装置机箱接地是否良好。

4.1.2 确认电压等级并投入运行

投入运行前,应该对装置进行常规的安全检查。确定装置上的标牌工作电压与实际供电电源电压相吻合后,将装置电源给上,运行指示灯周期闪烁,装置进入运行状态。

4.1.3 系统监测

上电后单元面板上管理板"运行"指示灯亮,测控板 "运行"指示灯亮,说明设备基本运行正常。装置运行后,用 维护口串行电缆或网线将装置设定的维护口与计算机连接, 运行维护软件,对装置进行系统参数配置及调试。

4.1.4 注意事项

- ◆ 在安装接线时,要确保柜子前面的空气开关处于断 开状态。
- ◆ 电流互感器信号线时,应特别注意信号线与电流接 线端子——对应,不得接错。否则,会导致电流互 感器开路,产生高压,对人及仪器造成不必要的伤 害。
- ◆ 合上空气开关前,应先检查电容模件到熔断器的接 线没有松动、滑落以及碎落的线头,以防短路。
- ◆ 开柜体后门后,注意不要碰上面的铜牌及裸露线, 以防触电。进行维修时,应先扳下空气开关,还应该 注意,这时空气开关到电力线接点还带电。
- ◆ 如果进行大的操作,应该断开变压器电源。注意机 柜接地是否完好。
- ◆ 系统配置参数不应随意改动。现场测试时,应谨防 电压回路短路及电流回路开路等事故发生。
- ◆ 装置通电情况下,不允许拆卸各组件。

4.2 使用和维护

4.2.1 开箱检查

货物运抵现场后,首先清点货物数量是否与您的需要及装箱清单一致。按以下条款检查:

- ◆ 外观检查: 打开机箱前门, 检查机箱等部件有无磕碰、 损坏, 各紧固螺钉有无松动。
- ◆ 接地检查: 检查机箱是否良好接地, 电源模块的地线

是否良好接地。

- ◆ 机箱端子接线检查: 检查机箱的端子排,检查所有接 线端子是否因运输有松动,将松动的紧固好。
- ◆ 模件检查:将模件上的集成电路全部按压一遍,以保证芯片的良好接触。
- ◆ 通信接线检查:检查通信模块与主站及其它智能设备 连接是否正确。
- ◆ 电源线检查: 检查所有电源线的连接是否正确。

4.2.2 现场接线

◆ 箱体安装

将 DFL-815 远方终端装置通过安装组件固定到环网柜内或开闭所开关柜墙壁上,设备大约距离地面 1 米以上。将开关与 DFL-815 远方终端装置之间的连接电缆,一头接与 DFL-815 远方终端装置箱内对应端子上,并在箱体底部电缆出口用锁紧装置固定,电缆另一头插到开关相应的插座上。

◆ 系统接地

在机箱一侧有个螺栓,上面带有接地标志,应在此处 用电力线与系统的大地相接。

◆ 通信连线

根据用户需求按通信线安装规范接入通信线,装置 根据用户通信方式不同在出线端子排上配备通信出 线端子,用清晰的标志注明。

◆ 二次回路的连线

从现场二次回路或是变送器等接至机箱端子排,所 有电缆进机箱后,可根据情况从端子排正面或侧面走 线并捆扎整齐。

◆ 电源接线

将电源直接接到标有电源+和 电源-对应的端子上

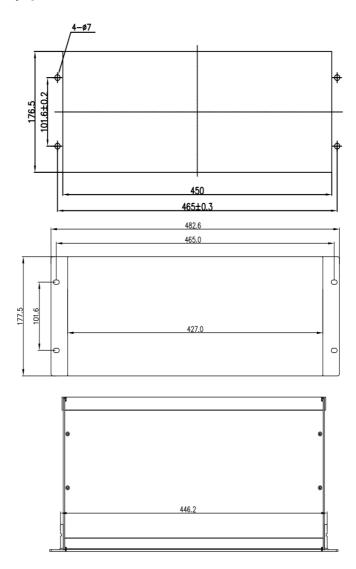
即可,注意接线完 毕后检查一下端子上的保险管是 否损坏,如果损坏应予以更换。

◆ 交流采样端子接线

交流采样的电流输入直接串接在现场的 CT 回路中,电压输入直接并接在现场的 PT 输出端。接入 Ia、Ia'、Ib、Ib'、Ic、Ic'六根电流进出线,接入 Ua、Ub、Uc、Un 四根电压线。接线时一定要注意电流的进出关系,保证相序的正确,否则会导致功率等计算的错误。

◆ 遥信端子接线

DFL-815 的开入采用的正电源开入方式。开入(-)接至电源负,正电经节点接至开入端子。


◆ 遥控端子接线

DFL-815 的每一组遥控有一个公共端、一个分闸接点和一个是合闸接点,公共端接控制回路的一端,分闸接点、合闸接点分别串接到分闸、合闸回路中。

◆ 通电检查

接通电源,大约 15 秒后装置运行灯亮起,表明装置 正常运行,可以按照现场情况用维护软件进行系统参 数的配置。

附图:装置尺寸及安装开孔图

